Near-Optimal MAP Inference for Determinantal Point Processes

نویسندگان

  • Jennifer Gillenwater
  • Alex Kulesza
  • Ben Taskar
چکیده

Determinantal point processes (DPPs) have recently been proposed as computationally efficient probabilistic models of diverse sets for a variety of applications, including document summarization, image search, and pose estimation. Many DPP inference operations, including normalization and sampling, are tractable; however, finding the most likely configuration (MAP), which is often required in practice for decoding, is NP-hard, so we must resort to approximate inference. This optimization problem, which also arises in experimental design and sensor placement, involves finding the largest principal minor of a positive semidefinite matrix. Because the objective is log-submodular, greedy algorithms have been used in the past with some empirical success; however, these methods only give approximation guarantees in the special case of monotone objectives, which correspond to a restricted class of DPPs. In this paper we propose a new algorithm for approximating the MAP problem based on continuous techniques for submodular function maximization. Our method involves a novel continuous relaxation of the log-probability function, which, in contrast to the multilinear extension used for general submodular functions, can be evaluated and differentiated exactly and efficiently. We obtain a practical algorithm with a 1/4-approximation guarantee for a more general class of non-monotone DPPs; our algorithm also extends to MAP inference under complex polytope constraints, making it possible to combine DPPs with Markov random fields, weighted matchings, and other models. We demonstrate that our approach outperforms standard and recent methods on both synthetic and real-world data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinantal point process models and statistical inference

Statistical models and methods for determinantal point processes (DPPs) seem largely unexplored. We demonstrate that DPPs provide useful models for the description of repulsive spatial point processes, particularly in the ‘soft-core’ case. Such data are usually modelled by Gibbs point processes, where the likelihood and moment expressions are intractable and simulations are time consuming. We e...

متن کامل

Faster Greedy MAP Inference for Determinantal Point Processes

Determinantal point processes (DPPs) are popular probabilistic models that arise in many machine learning tasks, where distributions of diverse sets are characterized by matrix determinants. In this paper, we develop fast algorithms to find the most likely configuration (MAP) of large-scale DPPs, which is NP-hard in general. Due to the submodular nature of the MAP objective, greedy algorithms h...

متن کامل

Structured Determinantal Point Processes

We present a novel probabilistic model for distributions over sets of structures— for example, sets of sequences, trees, or graphs. The critical characteristic of our model is a preference for diversity: sets containing dissimilar structures are more likely. Our model is a marriage of structured probabilistic models, like Markov random fields and context free grammars, with determinantal point ...

متن کامل

On Sampling and Greedy MAP Inference of Constrained Determinantal Point Processes

Subset selection problems ask for a small, diverse yet representative subset of the given data. When pairwise similarities are captured by a kernel, the determinants of submatrices provide a measure of diversity or independence of items within a subset. Matroid theory gives another notion of independence, thus giving rise to optimization and sampling questions about Determinantal Point Processe...

متن کامل

Faster Greedy MAP Inference for Determinantal Point Processes

⇤ i max i max " iOPT " ⇤ iOPT 2" where the first and third inequalities are from the definition of ", i.e., |⇤ i i |  ", and the second inequality holds by the optimality of i max . In addition, when the smallest eigenvalue of L is greater than 1, log detL X is monotone and non-negative (Sharma et al., 2015). To complete the proof, we introduce following approximation guarantee of the greedy a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012